PRODUCT NUMBERING SYSTEM:

Format: 1234-5-67

CARBON, OXYGEN: $\mathrm{C}_{n} \mathrm{O}$

01
02 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Primary alcohols, R-OH
Secondary alcohols, $\mathrm{R}_{2} \mathrm{CH}-\mathrm{OH}$
Tertiary alcohols, $\mathrm{R}_{3} \mathrm{C}-\mathrm{OH}$
diols $\mathrm{HO}-(\mathrm{R})-\mathrm{OH}$
polyols $(\mathrm{OH})_{\mathrm{n}}$
Hemiacetal, $\mathrm{R}_{2} \mathrm{C}(\mathrm{OH}) \mathrm{OR}^{\prime}$
ethers, C-O-C
polyethers, acetals, ketals
epoxides
cyclic ethers
crown ethers
carbohydrates
Hypohalites, (halohydrin), ROX 73
Peroxides, ROOX / Oxonium, $\mathrm{R}_{3} \mathrm{O}^{+}$
Aldehydes, $-\mathrm{HC}=\mathrm{O}$, and their hydrates
Acid halides, $-\mathrm{XC}=\mathrm{O}$
ketones, $\mathrm{R}_{2}-\mathrm{C}=\mathrm{O}$, and their hydrates
diketones / polycarbonyl
Ketenes, $-\mathrm{C}=\mathrm{C}=\mathrm{O}$
Hydroxy ketones
Carboxylic acids, -COOH
Carboxylates, $-\mathrm{COO}^{-} \mathrm{M}^{+},-\mathrm{COO}^{=} \mathrm{NH}_{4}{ }^{+}$
Esters, -COOR
Unsaturated esters (acrylates,
methacrylates, etc)
Lactones, -CO-O-
Anhydrides, R-CO-O-CO-R
Peroxyacids/peroxyesters, $\mathrm{RC}=\mathrm{OOOR}^{\prime}$
Carbonates/ortho ester, $(\mathrm{RO})_{2} \mathrm{C}=\mathrm{O}$

29 Hydroxy acid / ester; / Keto-acid / ester CARBON \& NITROGEN, $C_{n} N$

30 Primary amines, $-\mathrm{NH}_{2}$, and salts

74 31 32 33 34 35

37

Secondary amines, -NH - and salts
Tertiary amines, $>\mathrm{N}$ - and salts
Ammonium $\mathrm{R}_{4} \mathrm{~N}^{+}$
Aziridines
Imines, $\mathrm{C}=\mathrm{NR}$
Enamines / ketenamines
Nitrile -CN/ Isonitrile - $\mathrm{N}^{+} \mathrm{C}$ -
Hydrazine / Hydrazone
Azo (Diazene) $-\mathrm{N}=\mathrm{N}$ -
Amidine / Guanidine
Azide

CARBON, NITROGEN \& OXYGEN, $C_{n} N O$

45
46

C E/or $N \mathcal{E} /$ or $\mathrm{O}+$ OTHER NON-METALS

Cyanohydrin / Acyl cyanide
Oximes / Hydroxylamines and salts
Amide / Lactam / Amino ketones
Cyanate-O-CN/ Isocyanate - $\mathrm{N}=\mathrm{C}=\mathrm{O}$
Nitrones / Nitrile oxides / amine oxides
Nitrosamine / Diazene oxide (Azoxy)
Ureas, N-C=O-N / Uracils
Nitro
Nitro amines / amides / nitriles
Carbamic acid / Carbamates / hydrazides
Amino alcohols / ketones / ethers
Amino acids \& salts
Amino acid derivatives (esters, amides,
amide/esters, silylated, etc.)
Nucleosides

Organoboron / organic borates /
Lewis adducts / organic borate salts
Thiols /Thiophenols
Sulphenyl, sulfinyl, sulfonyl halides
Sulfonyloxy / Sulfone
Sulfonates / Sulfates
Sulfinate / Sulfoxide
Sulfides, disulfides, polysulfides
Thiocarbonyl / Thiocarboxy /
Thioamide / Thiourea / S+-COOH
Thiocyanate -S-CN / Isothiocyanate -
Sulfonamide / Sulfonimide / amino-
sulfur. Ammonium sulfur acid salts
$\mathrm{S}+$ other heteroatom heterocyclics
Sulfur halides, eg RSF5
Phosphines, PR_{3}
Halophosphines, $\mathrm{PR}_{3-n} X_{n}$
Phosphites /Phosphine oxides
Phosphates, $\mathrm{PO}_{4} \mathrm{R}_{2}$
Phosphonium
Phosphonate
Phosphorus ylide / Phosphorane
Phosphazenes / phosphoramide
Silanes
Halosilane, Si-X
Silanol, Si-OH
Alkoxy silane, Si-OR
Aryloxysilane
Siloxane, -Si-O-Si-
Silane ester
Amino silanes
Silazane
amido, imino, and ketoximino silanes

90	Other silanes
$91-97$	Reserved
98	Polymers

MONOVALENT ATOMS

Fifth character defines monovalent

substituents as follows:

```
\(0=\) no \(\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}\), or I
\(1=\mathrm{H}\)
\(2=\mathrm{F}\)
\(3=F, H\)
\(4=\mathrm{Cl}\)
\(5=\mathrm{Cl}, \mathrm{H}\)
\(6=\mathrm{Cl}, \mathrm{F}\)
\(7=\mathrm{Cl}, \mathrm{F}, \mathrm{H}\)
\(8=\mathrm{Br}\)
\(9=\mathrm{Br}, \mathrm{H}\)
\(\mathrm{A}=\mathrm{Br}, \mathrm{F}\)
\(\mathrm{B}=\mathrm{Br}, \mathrm{F}, \mathrm{H}\)
\(\mathrm{C}=\mathrm{Br}, \mathrm{Cl}\)
\(\mathrm{D}=\mathrm{Br}, \mathrm{Cl}, \mathrm{H}\)
\(\mathrm{E}=\mathrm{Br}, \mathrm{Cl}, \mathrm{F}\)
\(\mathrm{F}=\mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{H}\)
\(G=I\)
\(\mathrm{H}=\mathrm{I}, \mathrm{H}\)
\(\mathrm{J}=\mathrm{I}, \mathrm{F}\)
\(\mathrm{K}=\mathrm{I}, \mathrm{F}, \mathrm{H}\)
\(\mathrm{L}=\mathrm{I}, \mathrm{Cl}\)
\(\mathrm{M}=\mathrm{I}, \mathrm{Cl}, \mathrm{H}\)
\(\mathrm{N}=\mathrm{I}, \mathrm{Cl}, \mathrm{F}\)
\(\mathrm{P}=\mathrm{I}, \mathrm{Cl}, \mathrm{F}, \mathrm{H}\)
\(\mathrm{R}=\mathrm{I}, \mathrm{Br}\)
\(\mathrm{S}=\mathrm{I}, \mathrm{Br}, \mathrm{H}\)
\(\mathrm{T}=\mathrm{I}, \mathrm{Br}, \mathrm{F}\)
\(\mathrm{U}=\mathrm{I}, \mathrm{Br}, \mathrm{F}, \mathrm{H}\)
\(\mathrm{V}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}\)
\(W=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}, \mathrm{H}\)
\(\mathrm{X}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F}\)
\(\mathrm{Y}=\mathrm{I}, \mathrm{Br}, \mathrm{Cl}, \mathrm{F}, \mathrm{H}\)
```


EXAMPLES

Trifluoromethane: CHF_{3}
Contains only carbon, therefore $1^{\text {st }}$ digit $=1$
It is an alkane, therefore $2^{\text {nd }}$ digit $=1$
No functional gps, therefore $3^{\text {rd }} \& 4^{\text {th }}$ digits $=00$
Monovalent atoms are H,F therefore $5^{\text {th }}$ digit $=3$
Product number starts with 1100-3-

Hexafluoroisopropanol: $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{CHOH}$

Contains C \& O, therefore $1^{\text {st }}$ digit $=2$
Alkyl compound, therefore $2^{\text {nd }}$ digit $=1$
Secondary alcohol, therefore $3^{\text {rd }} \& 4^{\text {th }}$ digit $=02$
Monovalent atoms are H,F therefore $5^{\text {th }}$ digit $=3$
Product number starts with 2102-3-
4-Bromo-2-fluoroaniline
Contains C \& N, therefore $1^{\text {st }}$ digit $=3$
Aromatic compound, therefore $2^{\text {nd }}$ digit $=6$
Primary amine, therefore $3^{\text {rd }} \& 4^{\text {th }}$ digits $=30$
Monovalent ats. are $\mathrm{H}, \mathrm{Br}, \mathrm{F}$ therefore $5^{\text {th }}$ digit $=\mathrm{B}$
Product number starts with 3630-B-

Cesium fluoride, CsF

Inorganic, therefore $1^{\text {st }}$ character $=M$
Non-carbonaceous, therefore $2^{\text {nd }}$ digit $=0$
Atomic number of Cesium $=3^{\text {rd }} \& 4^{\text {th }}$ digit $=55$
Monovalent atoms is F therefore $5^{\text {th }}$ digit $=2$
Product number starts with M055-2-

A neat little system, once you get the hang of it!

* $\mathrm{C}_{\text {alk }}$ not bonded to polyvalent atom other than C

